Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present the first measurement of cosmic-ray fluxes of and isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on and nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the and fluxes exhibit nearly identical time variations and, above , the time variations of , , He, Be, B, C, N, and O fluxes are identical. Above , we find an identical rigidity dependence of the and fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the flux. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes, are significantly less affected by solar modulation than the He flux. We observe that these differences in solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the mass-to-charge ratio ( ) are not observed. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( ) flux are presented. The measurements are based on nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the flux exhibits nearly identical time variations with the , , and fluxes. Above 4.5 GV, the flux ratio is time independent and its rigidity dependence is well described by a single power law with . This is in contrast with the flux ratio for which we find . Above we find a nearly identical rigidity dependence of the and fluxes with a flux ratio of . These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the flux equal to of the flux and the secondary component of the flux equal to of the flux. Published by the American Physical Society2024more » « less
- 
            A bstract The NA62 experiment at CERN targets the measurement of the ultra-rare $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ decay, and carries out a broad physics programme that includes probes for symmetry violations and searches for exotic particles. Data were collected in 2016–2018 using a multi-level trigger system, which is described highlighting performance studies based on 2018 data.more » « less
- 
            A bstract A sample of 2 . 8 × 10 4 K + → π + μ + μ − candidates with negligible background was collected by the NA62 experiment at the CERN SPS in 2017–2018. The model-independent branching fraction is measured to be (9 . 15 ± 0 . 08) × 10 − 8 , a factor three more precise than previous measurements. The decay form factor is presented as a function of the squared dimuon mass. A measurement of the form factor parameters and their uncertainties is performed using a description based on Chiral Perturbation Theory at $$ \mathcal{O} $$ O ( p 6 ).more » « less
- 
            A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experiment achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
